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The conformai supergravity in three space-time dimensions is described by a 
pure Lorentz-Chem-Simons term. This system has constraints on curvatures 
and so it is a higher-derivative gauge model. The dynamical properties of this 
model are analyzed by means of the supersymmetric extension of the 
Faddeev-Jackiw symplectic quantization method. Using this algorithm in the 
first-order formalism, we study the gauge supersymmetric transformations and 
we find the constraints of the model. 

1 . 1 N T R O D U C T I O N  

As is well known, pure gravity in three space-time dimensions is 
described by a Chern-Simons gauge theory of the Poincar6 group or the de 
Sitter group (Uematsu, 1985; Achucarro and Townsend, 1986; Witten, 1988; 
Koehler et al., 1990; Grignani and Nardelli, 1991; Campbell et al., 1990). 
The extended Poincar6 supergravities in three space-time dimensions such as 
Chern-Simous  gauge theories are obtained by performing an InonU-Wigner 
contraction of the Lie superalgebra associated to the de Sitter or the anti-de 
Sitter groups, namely Osp(ll2; C) and Osp(l l2;  IR) X Osp(1/2; R), respec- 
tively (Koehler et al., 1991a, b). Due to its important role in supergravity, the 
supersymmetric extension of  the gravitational Loren tz -Chern-S imons  term 
has been treated by several authors. For instance, van Nieuwenhuizen (1985), 
by gauging the superconformal algebra in three space-time dimensions associ- 
ated to the group Osp(l /4) ,  found the general properties of  the model. In that 
paper the suitable three-dimensional action is constructed starting from the 
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Pontryagin invariant in four dimensions. There are several reasons to study 
conformal supergravity models in three dimensions. Among them an 
important fact from the quantization point of view is that in conformal 
supergravity the gauge algebra closes off shell. Moreover, when conformal 
supergravity models are considered it is possible to show that local supersym- 
metry can exist even in flat space-time. 

Like gauge theories, the conformal supergravity model in three dimen- 
sions is a constrained system and the requirement of invariance under local 
symmetries naturally implies constraints on curvatures. Consequently, when 
the model is treated in the second-order formalism, the higher-derivative 
character of the theory is made evident. This is an additional difficulty of 
the model. The Dirac formalism (Dirac, 1964; Sundermeyer, 1982) is the 
usual way to deal with constrained systems and has long been used in a large 
number of systems both in quantum mechanics as well as in field theory. 
However, in complicated systems the computation of the basic structure, i.e., 
the Dirac brackets, is heavy and tedious (Foussats et al., 1992). 

An alternative way to treat constrained systems was proposed by Faddeev 
and Jackiw (1988) (FJ) and in some cases is more economical than the Dirac 
method. This happens because in the FJ construction there is in general 
a smaller number of constraints (Kulshreshtha and MuUer-Kirsten, 1991; 
Barcelos-Neto and Wotzasek, 1992a,b, 1993; Montani and Wotzasek, 1993; 
Horta-Barreira and Wotzasek, 1992). The FJ symplectic quantization method 
is based on first-order Lagrangians. This is not a serious restriction because 
any system can be written in a first-order formalism by enlarging the configu- 
ration space introducing proper auxiliary fields. As can be shown, the general- 
ized brackets obtained from the equation of motion are equal to those obtained 
by means of the Dirac formalism, producing the same dynamical results 
(Costa and Girotti, 1988; Govaerts, 1990). In the FJ symplectic formalism 
the classification of constrained or unconstrained systems is related to the 
singular or nonsingular behavior of the fundamental symplectic two-form. 
Moreover, the classification of constraints into first class, second class, and 
so on has no meaning and there are only constraints associated with gauge 
symmetries. So in this method there are in general fewer constraints than 
generated by the Dirac algorithm. Hence, we can expect that the algebraic 
manipulations needed in the treatment of constrained systems could be 
shortened. 

The FJ symplectic formalism has been well studied (Barcelos-Neto 
and Srivastava, 1991; Barcelos-Neto and Wotzasek, 1992a,b; Montani and 
Wotzasek, 1993) and a supersymmetric extension of this method to include 
Grassmann dynamical variables can be found in Govaerts (1990), but it has 
not often been used in supersymmetric systems and even less in supergrav- 
ity models. 
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In this paper we will use the FJ symplectic quantization formalism to 
describe the first-order formalism of conformal supergravity in three space- 
time dimensions. In Section 2 we briefly introduce the main dynamical 
features of the model. In Section 3 we summarize the principal characteristics 
of the supersymmetric extension of the FJ symplectic quantization formalism. 
Finally, in Section 4 we apply the method to the supersymmetric model 
under consideration. 

2. CONFORMAL SUPERGRAVITY IN THE FIRST-ORDER 
FORMALISM. DEFINITIONS AND PRELIMINARIES 

Conformal supergravity in three space-time dimensions is the gauge 
theory obtained by gauging the superconformal algebra associated to the group 
Osp(1/4) (van Nieuwenhuizen, 1985). The 14 generators are: the Lorentz 
generators Mab (a, b = 1, 2, 3), the dilaton generator D, and the translation 
and boost generators Pa and Ka, respectively. Moreover, the odd generators 
are the ordinary and conformal supersymmetry generators Q~ and S ~ (~ 
= 1, 2), respectively. The (anti) commutation relation of the conformal 
superalgebra, the notation, and conventions we use are those given in (van 
Nieuwenhuizen, 1985; Foussats et al., 1992). 

The action of the conformal supergravity in three space-time dimensions 
is obtained from the four-dimensional Pontryagin invariant by peeling off an 
exterior derivative. The Lagrangian density remains defined by means of the 
three-form 

1 I~ A = "YaB RB A ~A -'F g CABC~ C A ~B A (2.1) 

where the two-form curvature R n is defined by 

I pC (2.2) R B = d~ B - -~ C~o~ ~ ^ 

The one-form gauge fields for the different values of the compound 
index A are 

~A = (toab, va, fa, b, 6, q~) (2.3) 

where co ~ is the spin connection, V a the dreibein, fa the proper conformal 
boost gauge field, b the dilaton, and ~ (Q-gravitino) and q~ (S-conformal 
gravitino) are two Majorana spinors. The totally antisymmetric graded struc- 
ture constants CAsc are related to the graded structure constants C~o through 
the constant symmetric Killing metric ~an of Osp(ll4) by the equation 

CAB C "~" "~I ADCDc (2.4) 
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The explicit 

Rat'(to) 
R a ( V )  

R"(f) 

R(b) 

p(~) 

o(~P) 
where 

expressions for the six curvatures defined in (2.2) are 

= ~ a b ( t o )  __ 2 ( V  a A f t ,  _ Vt'  A f  a) + 2~ ^ "rat'q~ (2.5a) 

= D V  a - ~ A 'ra~ (2.5b) 

= D f  a + ~'raq~ (2.5c) 

= d b  + 2 V  a ^ fa -- 2~ ^ q~ (2.5d) 

= D~ + Va ^ "ratp (2.5e) 

= Dq~ - fa  ^ "rat (2.5f) 

~l~ab(o~) = alto ab h- toac A O~c b (2.6a) 

D V  a = ( ~  - b )  A g a, D f  a = (~b + b)  ^ f a  (2.6b) 

D ~ =  ~ - ~ b  ^ ~ ,  Dq~= ~b + ~ b  ^q~ (2.6c) 

and the Lorentz-covariant derivatives of V a, f a ,  ~, and q~ are, respectively, 

~ V  a = d V  a + to ~ ^ Vt' idem f o r f  a (2.7a) 

1 toat' (2.7b) ~ = d~ + ~ ^ "rab~ idem for q~ 

To treat this supersymmetric model in the framework of  the FJ symplectic 
formalism it is necessary to write the Lagrangian density (2.1) in components 

~;~ = (__g)l/2~rvp ~IABRBow~A "1- -~ CABC~LffIJUv~.Lp , (Y, V, p = O, 1, 2 

(2.8) 

and next it must be written in the symplectic form by writing the time 
derivative explicitly. 

3. SUPERSYMMETRIC EXTENSION OF THE 
FADDEEV-JACKIW QUANTIZATION METHOD 

Before treating the model described in the above section, we review the 
main results of the symplectic formalism when used in supersymmetric field- 
theoretic models. 

The FJ symplectic quantization method is based on an action containing 
only first-order time derivatives. The most general first-order action contains 
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a Lagrangian density specified in terms of two arbitrary functionals KA(q A) 
and V(q A) which is given by 

Z(qA, r  = CKA(q A) --  V ( r  (3.1) 

The functionals KA(q a) are the components of the canonical one-form 
K(q) = KA(q) dq A and the functional V(q) is the symplectic potential. Both 
are of even Grassmann parity and therefore KA(q) has Grassmann parity I A I, 
where the general compound index A runs over the different ranges of the 
complete set of variables. The set of field dynamical variables qA is given 
by the original set of fields plus a set of auxiliary fields necessary to bring 
the system into its first-order form (3.1) and this set defines the extended 
configuration space. 

The Euler-Lagrange equations of motion obtained from (3.1) are 

0V 
~an ( -  I)'B'MAI~ cgqA -- 0 (3.2) 

The elements of the simplectic supermatrix MAn(q) are the components 
of the symplectic two-form M(q) = dK(q). The exterior derivative of the 
canonical one-form K(q) is written as the generalized curl constructed with 
functional derivatives and so the components are given by 

~KB(y) l ) , a , n  I 8KA(x) 
MAn(X, y) -- 5qa(x) (-- ~qS(y) (3.3) 

By definition, the Grassmann parity of the supermatrix Man is ( I A I + 
I BI) and the symmetry property is 

MaB = --(-- 1)IAIIBIMBA (3.4) 

When the simplectic supermatrix MAB is nonsingular, it defines the 
symplectic two-form characterizing the dynamical system described by (3.1). 
From the equations of motion, (3.2) is 

(~ = (MAn)_ 1 OV o,r (3.5) 

As the symplectic potential is just the Hamiltonian of the system, equa- 
tion (3.5) is written 

0V 
= IV, qS} = ~ [qA, qS} (3.6) 

where [qA, qS} = (MAS)-I are the generalized graded brackets of the FJ 
symplectic formalism. As is known, the elements (MAn) -~ of the inverse of 
the symplectic supermatrix MAn correspond to the graded Dirac brackets of 



60 Foussats, Repetto, Zandron, and Zandron 

the theory. Transition to the quantum theory is realized as usual by replacing 
classical fields by quantum field operators acting on some Hilbert space. 
Therefore, in this case the FJ and the Dirac methods are equivalent. 

On the other hand, in gauge-invariant field theories, besides the true 
dynamical degrees of freedom there are also gauge degrees of freedom, and 
so first-class constraints exist and the supermatrix Man is singular. In the FJ 
formalism the constraints appear as algebraic relations and they are necessary 
to maintain the consistency of the field equations of motion. In such a case 
there exist n (n < N) left (or right) zero modes v(k) (k = 1 . . . . .  n) of the 
supermatrix MAS, where each v(~) is a column vector with N entries ~) .  So 
the zero modes satisfy the equation 

~,~k)Man = 0 (3.7) 
A 

where A, B = 1 . . . . .  N. That is the case of the dynamical system described 
by the Lagrangian density (2.8). 

Consequently, from the equations of motion (3.2) we can write 

l~fk) = dx  ~k)(x, t) ~qA(x, t---------~ dy V(y, t) = 0 (3.8) 

The quantities fltk ) (of Grassmann parity I k l ) are the constraints in the 
FJ symplectic formalism, and they are introduced in the Lagrangian by using 
suitable Lagrange multipliers A ~k) of Grassmann parity I k l : 

L = ~IAK,~(q) -- A~k)fl~k) -- V(q) (3.9) 

In equation (3.9) we have assumed that qA(X) represents any field belong- 
ing to the symplectic set and the compound index A runs over the range 1, 
. . . .  N - n. Therefore, the submatrix MAB of the supermatrix (3.3) is nonsingu- 
lar. At this point one can run the symplectic algorithm once again, enlarging 
the configuration space by considering the set of variables (qA, ~k)). This is 
done by redefining the A ~k) variables as 

A<k) = _~k) (3.10) 

Therefore, the first-iterated Lagrangian is written 

L O) = qAKA(q) + ~f~)l'~fk ) -- Vfl)(q) (3.11) 

where V~ = V(q) l a<k)=0. 
In terms of the new set of dynamical variables, the symplectic superma- 

trix in compact notation is written 
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~ - ( -  1)'k"B'(Sl'l(k)/SqB) r ~,~q~ 
g(1) (3.12) 

/ 

where MAB (submatrix of MaB) represents the square nonsingular matrix 
constructed from the original symplectic set of field variables. The notation 
~l)(k)/~q 8 represents a rectangular supermatrix. 

This iterative procedure modifies the symplectic supermatrix until all 
the nonorthogonal zero modes have been eliminated. That means that the 
algorithm must be repeated until no new constraint is generated. As we will 
see, for gauge-invariant theories, the algorithm is not able to generate an 
invertible symplectic supermatrix. Therefore, to obtain the generalized brack- 
ets, gauge-fixing conditions must be imposed. 

In the next section we apply the above method to three-dimensional 
conformal supergravity in the first-order formalism. 

4. THE FADDEEV-JACKIW METHOD IN THREE- 
DIMENSIONAL CONFORMAL SUPERGRAVITY. THE 
CONSTRAINTS IN THE FIRST-ORDER FORMALISM 

The Lagrangian density (2.7) can be easily written in the form (3.1), 

= ( g l I 2 ~ i J ~ A B I X A ) ~ B  - -  V(IXr (4.1) 

The initial set of symplectic variables defining the extended configura- 
tion space is IXA = (IX.A, IXA), where ix A are defined in equation (2.3). From 
(4.1) we note that the variables IX~ do not appear in the symplectic part of 
the Lagrangian. 

The matrix elements of the symplectic supermatrix can be easily obtained 
and they read 

M~A(x),~fly ) = -- (-- 1)lAlIBI2gl/2Eij'yAB~(X _ _  y) (4.2) 

which corresponds to the square nonsingular supermatrix constructed from 
the original symplectic set of variables ix .A, and 

M~(x),~B(y) = M~(x),~y) = 0 (4.3) 

Consequently, the supermatrix 

M(~ = ( M ~  '~  ~) (4.4) 

is obviously singular. This supermatrix has zero eigenvalues whose corres- 
ponding zero modes we call ~ and which satisfy the equation (3.8). 
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On the other hand in equation (4.1) the symplectic potential V(p. A) is 
given by 

V(~LA) = --2gll2eiJ,YABP~(C3i~B __ l r B  . O. CX "~CDl~i  I~j ] (4.5) 

Therefore, in this case equation (3.8) is written 

I I  v'y't' dx v~(x,  t) dy Bl~(X, t) 

= f d x  v ~ ( x ,  t ) ( - -2gl /2~aB~iJR~) = 0 (4.6) 

Since equation (4.6) is satisfied for arbitrary zero-mode components 
v~(x,  O, it follows that 

~'~A : --  2 glI2~iJ'~ ABRB = 0 (4.7) 

Now, the constraints (4.7) are introduced in the Lagrangian by means 
of Lagrange multipliers and the first-iterated Lagrangian takes the form 

~1)  = (gl/2r + ~-~A~kA _ V(1)(~j~) (4.8) 

where 

V~ = V l ~ = o  = 0 (4.9) 

The new set of variables is (1~, ha), and the new singular once-iterated 
supermatrix has the following matrix elements: 

M~i(x),~) = M-~(x),~<y) = - ( -  1)'A'IZl2gtneiJ'YAB~(X -- Y) (4.10a) 

M~/~(x),xB(y) --(--  IVAItBI~,r A ~ A ( Y )  = , / '"X <y),~i(x) -- 8[x/B(x) (4.10b) 

MXA(X),Xa@) = 0 (4.10C) 

From equations (4.10a)-(4.10c) we can conclude that the first-iterated 
supermatrix M~Al~ is also singular. Due to the symplectic potential VO)(ix) = 
0, by repeating once the procedure, no new constraints are obtained. Therefore, 
the constraints [la cannot be eliminated because they are the true first-class 
constraints related to the gauge symmetries of the model. Moreover, as is 
well known, the zero modes associated to the singular supermatrix M<al~ 
generate a symmetry on the constraint surface (Montani and Wotzasek, 1993). 
It is possible to show that the components of these zero modes are the correct 
gauge supersymmetry generators for the spatial components of the gauge 
fields. In fact we have that 
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~12 s 
~,pa = v~AEn = - - ~  a<~),ff~) ~-~  EB (4.11) 

where Cn are the infinitesimal parameters corresponding to the supersymmetric 
transformations. After some algebra we find 

~d.l, A = f dy [aiEa(y) + Cacpfli(y)~-C(y)]~(X -- y) (4.12) 

which can be written 

~13o A = (VIE)  A (4.13) 

Now, by making the identification ha = - tx a and carrying out the gauge 
transformation on the Lagrange multiplier p,o A, we similarly find 

~p,~ = (V0e) a (4.14) 

Therefore, the infinitesimal transformation (4.13) on the constraint sur- 
face can be extended to the full space-time by writing 

~ = Cyst )  A ( 4 . 1 5 )  

This last equation is the usual form of a gauge transformation on the 
gauge fields. 

As noted above, when we deal with gauge-invariant theories, once the 
iterative FJ procedure is finished the simplectic supermatrix is even singular. 
The singular symplectic supermatrix contains the complete information about 
all the supersymmetries present in the model. 

With the aim of obtaining a nonsingular supermatrix, gauge-fixing condi- 
tions must be added to the classical Lagrangian. The gauge-fixing terms break 
the gauge symmetries in the symplectic potential, giving rise to an invertible 
supermatrix and providing the generalized FJ graded brackets which corre- 
spond to the graded Dirac brackets of the model. Therefore, once the nonsingu- 
lar supermatrix is found, the complete canonical information about the 
dynamical system is obtained. 

5. CONCLUSIONS 

In summary, we have found the constraints of the conformal supergravity 
model in the framework of the FJ simplectic method. In this context, the 
gauge supersymmetries in the first-order formalism were also analyzed. It is 
clear that the zero modes of the symplectic supermatrix constructed by this 
method are closely related to the generators of gauge supersymmetries. In 
this context the unique constraints are those associated to gauge supersymme- 
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tries, and so the role of generators of the gauge supersymmetries assigned 
to these first-class constraints is clear. At least in the first-order formalism, 
the algebraic manipulations to find the constraints are shortened in comparison 
with the Dirac procedure. 

On the other hand, it is convenient to give the gauge-fixing conditions 
in the second-order formalism (van Nieuwenhuizen, 1981) and not in the first- 
order one. As usual, the second-order formalism is obtained by considering the 
two constraint equations on curvatures (2.5b) and (2.5e) as strongly equal to 
zero. This allows us to eliminate the spin connection and the conformal 
gravitino as dynamical fields. The final Lagrangian density only contains as 
dynamical fields the graviton (the dreibein V ~) and the Q-gravitino. The 
second-order formalism makes evident the higher-derivative character of the 
model. Second time derivatives appear on the graviton field that cannot be 
eliminated, and so the use of the Dirac formalism in this model is very 
complicated (Foussats et aL, 1992). 

In the framework of the FJ it is necessary to introduce a set of auxiliary 
variables to rewrite the Lagrangian density of the system into its first-order 
form (3.1). We have no answer yet about the usefulness of applying the FJ 
method to this kind of complicated system. The problem of treating higher- 
derivative models by using the symplectic method will be the subject of a 
future paper. 
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